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Abstract

A model for predicting thermal waves within a surface-heated porous structure has been developed. The relevant

phenomena for the moisture, pressure and temperature fields are coupled. Considering mass and energy transfer

processes, a set of governing differential equations is presented. The solution of the problem has been obtained with a

finite difference scheme.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Thermal waves in porous media have recently re-

ceived growing attention in light of the common usage

of such media in various applications in the fields of

energy technology.

The theoretical analysis of heat and moisture trans-

port in porous material relies upon the underlying heat

flux and moisture transfer constitutive models and the

fusion of the mechanisms associated with heat conduc-

tion to those of poroelasticity lead to the fundamental

description of the thermo-poro-elastic behaviour of

solids.

The physical phenomena of moisture transfer in po-

rous media are usually explained by diffusion theory,

capillary flow theory and evaporation condensation

theory [1–24].

In a present work the evaporation mechanism was

assumed with concentration and pressure gradient

terms.

Among the various currently available heat flux

constitutive models, the Fourier model [25] which is

based upon steady-state assumptions, has long been

widely accepted for a variety of practical engineering

situations. With the Fourier model the resulting transient

temperature equations are of the parabolic type.

To account for the temperature propagation speed,

and to account for any anomalies associated with the

Fourier model, the Cattaneo model [26] was introduced.

With the Cattaneo model, the resulting temperature

equations are of the hyperbolic type. The Cattaneo and

a Fourier-like diffusive models are subcases that can be

degenerated from the so-called Jeffrey�-type model.

Additionally, a variety of misconceptions and per-

ceptions exist in the literature, including particular at-

tempts to relate macroscale in space phenomenon in

explaining the underlying microscale in space heat-

conduction phenomena in pulse heating, nonphysical

bounds, violation of causality principles and the like,

thereby altering the fundamentals associated with the

heat transport characteristics.

In the present article Cattaneo-type heat conduc-

tion model is assumed to account for the temperature

propagation speed. The above model may be use to

formulated generalized theory of dynamic thermo-poro-

elasticity.

2. Governing equations

2.1. Conservation equations for mass

The conservation equations for mass can be written

as
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_qqi ¼ �r qiwið Þ þ Wi ; ð1Þ

where qi is the density of species i, wi is the velocity of

species i and Wi is the production rate of species i. Since

no movement of the liquid (subscript l) is assumed

wl ¼ 0. Also, W ¼ �Wv ¼ �Wm (v ¼ vapor, m ¼ air–

vapor mixture), since the rate of liquid evaporation is

the same as the rate of vapor production, and since the

air does not change phase, the rate of mixture produc-

tion equals the rate of vapor production. The above

equation thus simplifies to

_qql ¼ �Wm: ð2Þ

The continuity equation for the air (subscript a) takes

the form

_qqa ¼ �r qawað Þ ð3Þ

and for the vapor,

_qqv ¼ �r qvwvð Þ þ Wv: ð4Þ

The conservation of gas phase mass gives

_qqm ¼ �r qmwmð Þ þ Wm: ð5Þ

Fick�s law allows the fluxes to be presented in the

forms of Eqs. (6) and (7):

ja ¼ qa wað � wmÞ ¼ �qmDrqba; ð6Þ

where qbi ¼ qi=qm is the mass fraction of species i with

respect to the density of the air–vapor mixture, and D is

the diffusion coefficient for Fick�s law for the air–vapor

mixture; and

jv ¼ qv wvð � wmÞ ¼ �qmDrqbv: ð7Þ

Finally, we get the following species equations:

qm _qqba þ qmwmrqba ¼ r qmDrqba

� �
� qbaWm ð8Þ

and

qm _qqbv þ qmwmrqbv ¼ r qmDrqbv

� �
þ 1
�

� qbv

�
Wm:

ð9Þ

2.2. Thermal equations

The fluxes of heat q and flowing gases r can be ex-

pressed by the Cattaneo-type model as

s
oq
ot

¼ �q� krh ð10Þ

and

r ¼ qawaha þ qvwvhv; ð11Þ

where s is the relaxation time, k is the thermal conduc-

tivity, h is the temperature and hi is the enthalpy of

component i per unit mass of component i. For the

Cattaneo model the temperature propagation speed is

given as

cT ¼
ffiffiffiffiffiffi
k

qls

s
:

Eq. (11) can be transformed [19] to the form

r ¼ qmwmhm � qmDharqba � qmDhvrqbv ð12Þ

or

r ¼ qmwmhm þ qmD hvð � haÞrqba: ð13Þ

Assuming that

qe ¼ qshs þ qlhl þ qmhm � qmRmh; ð14Þ

where e is the thermal energy and R is the gas constant,

the thermal equations can be expressed as

k
c2
T

o2h
ot2

þ qc _hh ¼ kr2h þ S
�

þ s
oS
ot

�
; ð15Þ

where

S ¼ �qm wmcpm
�

þ D cpv
�

� cpa
�
rqba

�
rh � hvð

h
� haÞWm

� _qmRmhqmRmh
i
:

2.3. Darcy’s law

The velocity of the air–vapor mixture is given by

wm ¼ �kDrp; ð16Þ

where kD is Darcy�s coefficient and p is the pressure.

2.4. Thermodynamic relations

Assuming that the vapor and air are ideal gases we

have the following relations.

Ideal gas equation for the vapor

pvV v ¼ qvRvh; ð17Þ

where V i ¼ qi=qai represents the volume occupied by

component i per unit total volume; and

Ideal gas equation for the air

paV a ¼ qaRah: ð18Þ

2.5. Clausius–Clapeyron equation

Since the liquid and vapor are assumed to be in

equilibrium,

pv ¼ psatðhÞ ð19Þ
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in the presence of liquid water. An analytic expression

for psat is

psatðhÞ ¼ Ch�ðB=RvÞ exp

�
� A
RvT

�
: ð20Þ

2.6. State equation

Using the notations qbi and V i, the state equation can

be presented as

pvðe � V lÞ ¼ qmqbvRvh ¼ ð1 � qbaÞqmRvh ð21Þ

and

pa e
�

� V l

�
¼ qmqbaRah; ð22Þ

where V v ¼ V a ¼ e � V l

� �
and 2 is the porosity.

Combining the above equations we get

p e
�

� V l

�
¼ qmRmh; ð23Þ

where

Rm ¼ qbvRv þ qbaRa: ð24Þ

3. Example

3.1. Simplified equations for a 1-D axysymetrical problem

One of the simple examples of the thermo-poro-

elasticity theory presented in this paper is 1-D axysym-

metrical problem. In such a case the set of governing

equations and suitable boundary conditions in a cylin-

drical coordinate system of coordinates (r; x) take the

form:

Thermal equations

k
c2
T

o2h
ot2

þ qcp
o _hh
ot

¼ k
o2h
ox2

þ 1

r
o

ox
rkð Þ

�
� qmcpm

� wm

�
þ
D cpr � cpa
� �

cpm

oqba

ox

�
oh
ox

� hvð
�

� haÞWm � o

ot
qmRmhð Þ



þ s
o

ot
1

r
o

ox
rkð Þ

�
� qmcpm

� wm

�
þ
D cpr � cpa
� �

cpm

oqba

ox

�
oh
ox

� hvð
�

� haÞWm � o

ot
qmRmhð Þ


; ð25Þ

hðx; 0Þ ¼ h0ðxÞ; ð26Þ

oh
ox

ð0; tÞ ¼ 0 ð27Þ

and

�k
oh
ox

ðL; tÞ ¼ h h L; tð Þ
�

� hf ðtÞ
�
þ fr h4 L; tð Þ

h
� h4

f ðtÞ
i
;

ð28Þ

where L is the radius of the element, hf is the environ-

mental temperature, h is the convective heat transfer

coefficient, f is the effective shape factor for radiation

and r is the Stefan–Boltzman constant.

Species equations

oqba

ot
¼ D

o2qba

ox2
þ 1

qmr
o

ox
rqmDð Þ

�
� wm


oqba

ox
�

qbaWm

qm

;

ð29Þ

qbaðx; 0Þ ¼ qba;0ðxÞ; ð30Þ

and

oqba

ox
ð0; tÞ ¼ 0: ð31Þ

Continuity equations

oqm

ot
þ 1

r
o

ox
rqmwmð Þ ¼ Wm; ð32Þ

wmð0; tÞ ¼ 0; ð33Þ

oql

ot
¼ �Wm; ð34Þ

and

qlðx; 0Þ ¼ ql;0ðtÞ: ð35Þ

3.2. The solution

The solution is obtained by an implicit finite differ-

ence technique with a constant grid and variable time

step sizes. Since the equations describing heat and mass

transfer in porous materials are partial differential

equations of parabolic type, the solutions of such

equations are well known and can be found in many

textbooks on numerical analysis. These data do not

provide any special information regarding this paper

and have been omitted.

3.3. Temperatures in a 1-D axysymmetrical element

The specific case of a 1-D axysymmetrical structural

element with a uniform initial temperature is considered

to illustrate the results of the analysis. The element

length is 12 cm. The initial moisture content is from 0 to

10.8 cm and the remaining 10.8 to 12 cm is supposed to
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be dry. The thermal parameters used are presented in

Table 1. The results will be described in nondimen-

sional values so nondimensional parameters are shown

in Table 2. In Fig. 1 the heating curve for the problem

analysed is shown. Figs. 2–4 present the nondimensional

temperature in the porous element as a function of

nondimensional time for the assumed heating curve and

various material parameters.

Table 1

Thermal parameters used in the study

cp ¼ 1040 J/kgK ah ¼ 10 � 10�6 1/K

D ¼ 2:142 � 10�5 m2/s b ¼ 0:1

f ¼ 0:9 kD ¼ 5 � 10�12 to 1 m3 s/kg

a ¼ 0 to 1 qba1 ¼ 1:0

aD ¼ 1 a ¼ 5:22 � 10�7 m2/s

k ¼ 1:70 J/sm K 2¼ 0:2

A ¼ 3:18 � 106 J/kg q ¼ 2400 kg/m3

B ¼ 2470 J/kgK ql;0 ¼ 0:200 kg/m3

C ¼ 6:05 � 1026 N/m2

Table 2

Nondimensional parameters used in the study

Bi ¼ 0 Sh ¼ 1
�ccp ¼ 1:0 St ¼ 0:1

D ¼ 1:0 �aa ¼ 1:0
�kk ¼ 1:0 q ¼ 1:0
�kkD ¼ 10–1 �qq1:0 ¼ 0–0:1

Lk ¼ 43

Fig. 2. Nondimensional temperature as a function of non-

dimensional time for Bi ¼ 0:6, �kkD ¼ 10, �qql;0 ¼ 2:9 � 10�2.

Fig. 3. Nondimensional temperature as a function of nondi-

mensional time for Biot numbers Bi ¼ 1 (a) and Bi ¼ 0 (b),

�qql;0 ¼ 0:1 and �xx ¼ 0:82 for heating curve as in Fig. 1.

Fig. 1. Heating curve for the problem analysed.
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4. Concluding remarks

An analysis is developed for thermal waves in a wet

porous medium subject to unsteady, nonlinear boundary

conditions. The Cattaneo model was introduced. The

simplified equations have been solved simultaneously by

an implicit finite difference technique.
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